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CERTAIN VARIATIONAL PROBLEMS IN THE GAS DYNAMICS OF
AXTSYMMETRIC SUPERSONIC FLOW

By U. D. Shmyglevski

ABSTRACT

By using the gas-dynamic functions on the surface bounding the
"region of influence,"” the problem of finding axisymmetric bodies with
minimum wave drag has been treated. The method allows the determination
of the minimum-drag shape between two prescribed points when the flow
properties at the upstream points are known. Application of the method
to the determination of minimum-drag body nose and boattall shapes is
presented.
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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CERTAIN VARIATIONAL PROBLEMS IN THE GAS DYNAMICS OF
AXISYMMETRIC SUPERSONIC FLOW*

By U. D. Shmyglevski

An object of many gas dynamics investigations is the finding of
bodies that possess the minimum wave resistance. Relatively a long time
ago appeared the solution of the linearized equations. For the varia-
tional problems of gas dynamics, Nikolski (ref. 1) proposed introducing
into consideration the surface bounding the 'region of influence.’
Through gas-dynamic functions on such a surface the forces acting on the
body can be expressed without integrating the equations of gas dynamics.
The first exact solution of the variational gas dynamical problem was
obtained by Guderley and Hantsch. In their work (ref. 2), the problem
is reduced to the numerical integration of a system of equations.

The problem here considered is a degenerate variational problem.
A method of solution of such problem has been worked out by Okhotsimski
(ref. 3). The author is deeply grateful to Okhotsimski for his great
help in the conduct of this work.

1. The axlsymmetric flow of a gas is in cylindrical coordinates
determined by the equation of continuity

Brpwaios d . Brawa:in 3 _ o (1.1)
the equation of motion
wcosa?i.%zf_ﬁ+w5m¢iw_%_ﬁ+%%§___o (1.2)
the equation of Bernoulli
vl x p_ 1lx+1
z2 P x- 1552 %-1 (1.3)

*Nekotorye variatsionnye zadachi gazovoi dinamiki osesimmetrichnykh
sverkhzvukovykh techenii. Prikladnaya matematika i mekhanika, t. XXI,
no. 2, 1857, pp. 195-208.
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and the equation expressing the constancy of the entropy

P _ {constant in the irrotational case (l 4)

px f(¥) in the flow with vorticity

where x,r are Cartesian coordinates in the meridional plane of flow,

¥ 1is the stream function, w the velocity referred to the critical flow
velocity ag, 9 the angle of inclination of the velocity to the flow
axis, w the adiabatic exponent, p the density of the gas referred to
the density Py of the oncoming flow, and p the pressure referred to

2

the product P 2%

Along the characteristics of the system of equations defining the
irrotational flow the following relations are satisfied:

First family:

1l + cos 2a sin 4 sin a _
dr = tan (8 + a)dx, as + T eos 29 Ot Teia ) dr=0
(1.5)

Second family:

dr = tan (9 - a)dx, ds - L+ cos Za do - =28 3 sing dr=0
, X - cOSs 2a r sin (9 - a)
(1.8)

where a denotes the Mach angle determined by the relation

sinz a = xP_
pw

Along the streamlines the relation is satisfied
dr = tan ¢ dx (1.7)
Bquation (1.1) permits introducing the stream function by the formula
dy = rpow(cos § ds - sin ¢ dx) (1.8)
2. Let us consider the region of flow of a gas about a body of
revolution (fig. 1). Let the gas flow in the direction from the point A
to the point B and let the preceding part of the flow be known; that is,

the characteristic of the first family AE is known. We must find the
generatrix of the body AB that assures the minimum local resistance.
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Through the point B is drawn a characteristic of the second family
up to the intersection with the characteristic AE at the point C. The
region ABC, bounded by the characteristics and the body, will be denoted
as the region S.

We transform equation (1.2) with the aid of equation (1.1) to the
form

é; r(p + pwé cos §) + g% row? sin 4 cos 4 =0

We integrate both sides of this equation over the region S and by
Green's formula we pass to the integral over the contour L bounding the
region S; we obtain

_/][ga; r(p + pw2 cos? ) + EB; rpwé sin ¢ cos 6] dx dr
S

=“’r - rpwe sin d cos d dx + r(p + pwe cosl @&)dr = O
L (2.1)

The contour integral (2.1) consists of the integrals over the gen-
eratrix AB, the characteristic AC, and the characteristic BC. In each
of these integrals we eliminate d&x, using respectively egquations (1.7),
(1.5), and (1.6). The first of the integrals X is equal to

Tp
X = pr dr (2-2)
r

and differs from the wave resistance of the part of the body considered
only by a constant factor.

To determine the shape of the body giving the least wave resistance
it would be natural to seek to obtain the minimum of the function (2.2)
directly. But for solving such problem it is necessary to know the de-
pendence of p on the form of the generatrix AB, and this can be ob-
tained only by solving the general problem of the flow. Since this solu-
tion 1s unknown, it is necessary to express X through the integrals
over AC and BC with the aid of equation (2.1). This permits solving the
Problem without recourse to attempts to seek the general integral of the
equations of the axially symmetric flow of a gas.



The magnitudes w and p are connected with @ and the stagpation

density Po by the formulas

L
x-1

W2 o X+l _ l-cosZc,)
T w - cos 2a’ P = Polx < cos 2a

Using these equations in transforming the integral (2.1), we arrive
at the desired form for X:

r
C
- x + 1 sin o cos 4
X = pg V————z ,/ o{a)t(a) [ —— + STald + a)]r dr -
I‘=—’I‘A
e
sin a cos B
- o(cz.)‘r(a,)[ ~ IO E)]r dr
I‘=I‘B ’
(2.3)
where
1 x+1
2 x-1

X + 1 1 - cos 2a
ofa) = Vi —<os 2o’ *(a) = (x - cos 2(1.)
We shall express the length X = xg - x5 and the total discharge

of the gas ¥ = O through the characteristics AC and BC in terms of the
integrals over these contours.

From the first relations of (1.5) and (1.6), we readily obtain

X = [ cot@® + a)dr - f cot(d - ao)dr (2.4)
r r

Equation (1.8) permits obtaining

‘ r'e e
-0 = X + T(a)r dr t(a)r dr
¥ o ¥ [ sin(d +a) T sin(d - a) (2.5)
1'=I‘A I'=rg
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It is to be noted that the first of the integrals entering (2.3),
(2.4), and (2.5) are taken along the known characteristic AC and are
therefore functions only of the first limit. The second integrals in the
same equations are taken along the unknown characteristic BC. The func-
tions a(r) and $(r) entering these integrals are to be determined,
vwhile the integrals themselves are functionals.

3. In the second relation of (1.6) in the characteristic of the
second family, there enters the combination to be integrated, which we
denote by

1l + cos 2a a

dg = dd - 3 cos 2a

Integrating this equation we obtain

B=2d+ f(a), fla) = Vx»"'larc tan * - 1 cot a)+a+const
x -1 x + 1

(3.1)

For what follows, it is more convenient instead of the unknowns
a,d 1in the characteristic of the second family to introduce the unknowns
a,p making use of equation (3.1).

Let us rewrite equations (2.3) to (2.5) and (1.6) in the new nota-
tions omitting certain constant factors:

rec
Y = F]_(rc) = #]_(I‘,G;,B)dr (3'2)
r=rB
re
X = Fp(rg) - / #(a,p)dr (3.3)
I'=I'B
I‘C .
¥=0-= Fz(rc) + / $z(r,a,B)dr (3.4)
I‘=I‘B ‘

3, (r,a,,B, %g) =0 , (3.5)



where

re
in A cos B
Fy =/ a(A)t(A) [51: TGS R]dR
R

rC ’
Fo =/ cot(6 + A)dR & (3.6)
R

=[‘A
Tc
v _/ T(A)R &R
3= sin{(6 + A
R=II‘A J
) . ) N\
$) = c(a)f(m){SIi = - si;(ﬁss[Ea fchn%E]a]}r
®, = cot[B - fla) - a]

r— (3.7)
)
®5 = sin[B fi?(;j- al

¢ _ 48 sin[p - f(a)lsin a
¢ 74 " rsin[p - f(a) - ) J

where R 1is the radius, A the Mach angle, and & the angle of inclina-
tion of the velocity to the characteristic AC.

We shall formulate the arising general variational problem of
Lagrange with isoperimetric conditions: For given constant ra, rp, and

X and functions A(R) and 6(R) entering equations (3.6) to find functions
a(r) and B(r) that render the difference (3.2) an extremum for the iso-
perimetric conditions (3.3) and (3.4) and that satisfy the differential
condition (3.5).

The ciass of admissible functions will in what follows be determined
in considering the gas-dynamic properties of the problem.

There are considered here flows without shock waves within the
region ABC (fig. 1). Hence there arises at once the requirement of con-
tinuity of the functions a(r) and B(r). Moreover, the following con-
ditions must be satisfied:

alrg) = Alzg),  (rg) = 8(r¢) (3.8)
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which express the continuity of the Mach angle and the inclination of the
velocity at the point C.

Remark. - We note first of all that the problem under consideration
is a degenerate one. In fact, the functions ¢, ¢p, ¥z, and ¢, do not
contain the derivative da/dr, while they contain the derivative dp/dr
linearly. This leads generally to the nonsolubility of the variational
problem in the classical sense. The solution of the problem completely
or partially may not coincide with the integral of the system of Euler
equations; and, instead of the classical extremum, for which the first
variation of the functional is equal to zero, there may arise a border
extremum determined by the physical boundaries of the region of admissible

functions.

4. We shall seek the variation OX in agreement with equation (3.5)
and counditions (3.3), (3.4), and (3.8). We construct the sum

re
J = F(rc) +/ q"(r;a')ﬂ) %%)V) dr (4.1)

=r B
where

F(rg) = F(rg) + AFp(rg) - WF5(r)

@(I‘,(I.,S, %g)v) == [4’1(1‘&-;&) + XQZ(CLJB) + ués(rJa')B)

+ v(r)e, (r,cn,ﬁ %E.)}

v(r) being variable and A and u constant Lagrange multipliers to be
determined.

The problem arises of seeking the system of functions afr), B(r)
that render the sum (4.1) an unconditional extremum and satisfy the con-
ditions (3.8).

Under the condition $4(r,x,B,dB/dr) = 0, the sum J differs from
the sum X by & constant magnitude, since X = const, ¥ = 0. If these
conditions are satisfied on effgctiﬁg the varistion, the variation &J-
coincides with the variation BX, since &%y = &X = BY = O.

In taking the variation of the sum (4.1), it is necessary to take
into account that the magnitude ry 1is given and therefore ©O&ry = O.



Moreover, the variations ©&rg and ©®pc are connected, since the char-

acteristic AC is given. Finally, integrating by parts the expression
containing the derivative of the variation &g, we obtain

8J = {%;E + & 4+ y [(gg)l - (gg)z]}r=rc dro; - vgbhp

rc
d
+/ [%sa + (@B - & @B,) 5B]dr
I‘=I‘B

"(4.2)

where the subscripts 1 and 2 denote the derivatives and variations taken
respectively along the characteristics of the first and secound families.

If conditions (3.3) to (3.5) are identically satisfied, the varie-
tions 8J and 8X agree for any values of v(r). We shall choose this

function in such manner that in formula (4.2) the expression with 8B

drops out. We set the terms in front of the integral equal to zero; this
gives the conditions

N ORI N SRS RIS

and the equation for the determination of v(r),
2 -3 9, =0 ' (4.4)
B dra ‘
which must be satisfied identically on the entire characteristic BC.

The variation of the sum (4.1) assumes the following form:

To
8X =f $ 5a dr (4.5)

I'=I'B

Conditions (4.3) together with (3.8) become the boundary conditions
for determining the functions afr), B(r), and v(r).

To obtain the classical extremum, the expression before the varia-
tion &c in formula (4.S) must be equated to zero. Together with (4.4)
and (3.5), this will give the system of equations.
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S. The system of equations ¥, = 0, (4.4), and (3.5) written out
more fully has the form

c(a)'c(a,)[l ; L sin2(p - f) 2(L + cos 2a)cos u} + X-Eé?l

sin o

+ pt(aMw(a)cos(B - £ - a) - (& + 1)cot o stn(p - £ - a)]

- —15 [sin® 2a - 2(x - cos 2a)sinZ(p - £)] =0

2r
(5.1)
%% = sinz(B f - a) {rt(a)[o(a)cos a - H COS(E -f-a))- 2+ ; sin? c}
(5.2)
dp _ sin(B - flsin a (5.3)

dr T sin{(B - f - a)
where
o(a) =1 - x +2 cos 2a

The fact should be observed that equation (5.1) is not a differential
equation.

Remark. - The equations of the first order (5.2) and (5.3) give two
arbitrary factors in determining the functions. Moreover, rq and the

values of the constants A and u are still not determined. In all,
there are five arbitrary factors in determining the functions.

To obtain the extremum in the classical sense, the required func-
tions must be subjected to the boundary conditions (3.8) and (4.3) and
the isoperimetric conditions (3.3) and (3.4). Altogether this gives
six conditions.

From this it becomes evident that the problem is insoluble if the
condition is imposed that the required functions must satisfy equations
(5.1) to (5.3) over the entire characteristic BC.

6. Equation (5.3) connects the functions af(r) and B(r). If the
system of boundary conditions is complete, one of the functions completely
determines the other. ILet us consider the function af(r) on the char-
acteristic BC and for this let us turn to figure 2. The shape of the
curve a(r) plays no part in the further considerations. For simplicity
we show in figure 2 one of the forms of behavior of a(r). The function
a(r) on the characteristic AE is represented by the curve ae.
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The theory considered is suitable only for supersonic flows. Hence,
the u?per natural boundary of the region of variation of o 1is the line
a= n/2.

The lower boundary of the region can be determined by considering
the gas-dynamic properties of the problem. All possible functions a(r)
on the characteristic BC can be obtained only by a change of the flow
boundary, the generatrix of the body AB (fig. 1). We must emphasize that
gas flows are consldered that have only one boundary AB and that do not
contain shock waves in the triangle ABC.

2214

To each value r = rg on the given characteristic AE corresponds a
completely determined value a = ap. That flow of the gas must be found

for which the curve a(r) on the characteristic DC will be situated below
all other possible curves. Physically, it is evident that the greatest
expansion of the flow is assured by the presence of a break of the gen-
eratrix AB at the point A. In this case (refs. 4 and 5), the characteris-
tics of the first family diverge as a bundle of lines from the point A
(fig. 1) up to a certain characteristic AD, on which, at the point A, the
angle of inclination of the velocity coincides with the angle of the
tangent to the contour AB at the point A. The characteristic AD is a
line of weak discontinuity in the region of flow. 1In figure 2 let the
relation a = ax(r) on the characteristic of the second family CD of the
flow be represented by the curve cd. The characteristic CB then con-
sists of the segment CD not coinciding with the extremal and the extremal
segment DB.

We shall call a function ofr) admissible if it is a continuous
function satisfying the inequality a,(r) < a(r) < /2. The admissible
functions B(r) are then also completely determined.

7. Taking the previously explained properties of the characteristic
BC into account, we shall derive the boundary conditions for the segment
BD of the characteristic (fig. 1).

We write the sum (4.1) in the form

D Tc
J = F(re) +/ $dr + gadr (7.1)
r=rpg r=rp

Let us consider the second integral of (7.1). It varying the upper
limit, only variations along the given characteristic AE are permitted.
The variation of the lower 1limit is broken up into two. It is admissible
in the first place to vary rp along the characteristic of the second
family; that is, to vary the region occupied by the bundle of characteris-
tics. 1In the second place, it is permissible to vary rp elong the
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characteristic of the second family, but this variation must not now be
carried out independently of the variation of rp, because with r¢
given the entire characteristic DC is determined. In connection with

this it is more convenient to vary the second integral of (7.1) as a whole,
as a function of rg, not forgetting of course also the variation along

the characteristic of the second family. The variation of this integral
is easily obtained by considering an integral of the type (7.1) over the
contour ADC for fixed characteristics AC and AD. The integral over DC
is then expressed through the integrals over AC and AD.

It is npecessary also to bear in mind that on BC all functions are
continuous. From (3.5) the continuity of the derivative dg/dr then
also follows.

Carrying out all the required calculations and taking into account
the continuity of a, B, and dB/dr, we arrive at an expression for &J
agreeing with (4.2), if in the latter we replace the point C by the point
D. The arbitrariness in the choice of the characteristic AD reunders the
problem soluble.

The system of equations for counstructing the characterlstic BD
remains unchanged and agrees with (5.1) to (5.3).

Equating the expressions before the integral in the expression for
8J to zero we obtain

%;:Dl+¢+v[(%g)l . (%g);” =0 (7.2)
I‘=I‘D
v(rg) = 0 (7.3)

Equations (3.3), (3.4), (3.8), (7.2), and (7.3) form a complete
system of boundary conditions for the soluticn of the problem.

8. On the characteristic BD, assuring a minimum of the resistance
(fig. 1), eguations (5.1) to (5.3) must be satisfied for the boundary
conditions (3.8) and (7.2) at the point D and the condition (7.3) at the
point B. We introduce an arbitrary characteristic of the first family
GF. The segment of the generatrix GB has no effect on the flow to the
left of GF. Therefore the part of the generatrix GB should possess
minimum resistance for the given characteristic GF and the points G and
B (otherwise, a decrease of the resistance of the segment GB decreases
the resistance of the entire generatrix AB). On the segment of the
characteristic FB, equations (5.1) to (5.3) are satisfied, and at point
B the condition (7.3). Hence, at the point F the transversality condi-
tion (7.2) written for r = rfp must be satisfied. This condition, by
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virtue of the arbitrariness of choice of the characteristic GF, is satis-
fied also on the entire characteristic BD. Hence, it must be an integral
of the system (5.1) to (5.3). 1In expanded form, (7.2) is given by :

T(a)r [sin(él_,_ ) + Sin(@l_ (ﬂ] (u - o(a)cos @]

- A[cot(d + a) - cot(d - a)] +v {(%E)l - Is-i;lig(zir-l g)] =0
(8.1)

221-1

From equaticms (5.1), (5.2), and (B.1), we eliminate X and u. As a
result we obtain a linear homogeneous differential equation of the first
order for determining v(r). Recalling cordition (7.3), we at once con-
clude that

v(r) =0 (8.2)
The two obtained integrals of the system of equations satisfy the
boundary conditiocns and tcgether with (5.1) permit finding the expressions -
for afr) and #(r). In place of equation (5.1) it is simpler tc make
use of equation (5.2), substituting in it Vv = O:
rt(a){o(a)cos @ - 4 cos(s - a)] = A (8.3)

Eliminating X from (8.1) and (8.3) gives

[x+1 cos(® +a) _ |
X - COS 2@ COS @ =H (8.4)

Substitution of ¢ from (8.4) in (8.3) gives the equation connecting
a and r:

(i

X+l
x-1

[3M)

%X - cos 2a |(x + 1)cos a
x + 1 X - COS Za

2 ; x + 1 2 0ps2 =
HU” cos a cos 2a .usm 2“‘/1-,cos e u“ cos a,]_])\l

(1 - Ccos 2a)
r—_——
X - COS 2a

(8.5)

Fipally, eliminating p from (8.1) and (8.3), we obtain the equation
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1xl
2%

-1
s
r(i - cos 2@) |/ x + 1 siny _ (8.6)
X - cOs 2q, X - COS 20 COS Q@

which permits writing down the expression for ¢(a):

. _l x+1 l
[ 4 x-1 4
. Afjcos a {1 - cos Z2a X - COs 24
9= sign ¥4p [arc sin ‘/[]r (x-cos 2@) < aw—) >]

(8.7)

In this formula there is attached to the magnitude 4 the symbol
ﬂD in accordance with the following considerations. The magnitude XA

is constant; if the magnitudes a # n/2 and dp # O, the magnitude 9

is not equal to zero anywhere on the characteristic BD, as follows from
(8.6) and, being a continuous function, does not change sign. If ¢ =0
at one point, then 4 = O on the entire characteristic BD.

The magnitudes x and ¥ on the characteristic BD are readily ex-
pressed in quadratures with the aid of equations (1.6) and (1.8),

The obtained formulas actually give the solution of the problem.
This may be confirmed directly by a check.

The magnitudes X and u are obtained from the known r, a, and 4
at any point from formulas (8.6) and (8.4).

It is of interest to observe that any streamline HF of the obtained
field of motion of the gas (fig. 1) is an extremal for a given character-
istic AD and the pcints H and F, since on the characteristic DF equa-
tions (5.1) to (5.3) and all boundary conditions are satisfied.

The generatrix AB is obtained as solution of the pfoblem of Goursat
between the characteristic AD and the now known characteristic BD.

9. Up to now we have considered the required conditions for an
extremum. In the problem under consideration the minimum of the sum
X must be obtained.

Again we turn to figure 2 and recall expression (4.5) for &X,

Let there be found a solution satisfying equations (5.1) to (5.3)
and all boundary conditions. By virtue of equation (S.l), the equation
éa = 0 is satisfied on the entire curve bd; on the curve cd, generally

speaking, % % 0. The minimum of the sum X will occur in the case
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where ®, >0 for Ba > 0 and &y <0 for Ba <O, In fact, for dax >0
on the curve bd, we then have ®X > 0, for & < O we have bBX >0, as

follows from equation (4.5). Moreover, on the curve cd in this case
?a > 0. The contrary case is impossible, since on the curve cd the least

of all possible values of a(r) occurs. By virtue of this property, the
curve cd 1s admissible to the variation on it of ®ax > 0. From ¢, 20

and (4.5), it follows that these permissible variations lead to BX > O.

There occurs here a border extremum - that is, existing only because of
the positiveness of the admissible variations &a.

Let us check the possibility of such variation of the obtained curve
cdb for which the sum X decreases. On the segment cd with the exception
of the point 4, the admissible variations ®&a > O lead, as has been ex-
Plained, to 8X >0 by virtue of éa > 0. The sign of Qa can be checked

for example by the direct computation of $¢ on cd. At the point d every
infinitely small element of the curve a(r) not coinciding in direction

with db leads to 8X > O, if ¢y, > 0. In fact, by virtue of equation

(3.5), the variation 88 has a higher order of smallness than the varia-
tion B&a; hence, the sign of the magnitude @a on the element of the

curve considered 1s conditioned by the sign of ®gy. Thus, the minimum

X 1is assured by the coincidence of this element with an element of the
curve db. For the following point the same considerations hold true.
By passing from one point to the mext we can see that the entire curve
cdb assures a minimum X,

It 1s necessary also to check the sense of the extremum from the
boundary conditions.

If the boundary conditioms (7.2) and (7.3), on satisfying conditions
(3.3), (3.4), and (3.8) and the equations of the problem, give the minimal
value Xpip, then we must have

X >Xpip for vp # 0 (9.1)

with observance of conditioms (7.2), (3.3), (3.4), (3.8), and equations
(5.1) to (5.3), and

X > Xpio (9.2)

for

e [@ @) s

YA AR
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with observance of conditions (7.3), (3.3), (3 4), (3.8), and equations
(5.1) to (5.3)

The inequalities (9.1) and (9.2) can likewise be checked on carrying
out the computations. In both cases of course all the conditions must
be satisfied only in choosing some new point D in the family of
characteristics.

10. Let us consider the problem of the nozzle. This problem is
solved in an entirely similar manner. It has been considered in detail
and reduced to ordinary differential equations in the work of reference
2. In this case, too, we shall indicate the solution in finite form.
The functions afr) and §(r) on the characteristic BD (fig. 3) are from
the same equations (8.5) and (8.7). The tables of gas-dynamic functions
in the region AOCD for the case of a two-dimensional transition surface

are given 1in reference 6.

11. In the case of vortical flow, it is also possible to obtain
simple relations on the required characteristic. As independent variable
in this case the stream function V must be chosen.

On the required characteristic AC there must be given the entropy
function

-1
o(y) =P p

The problem of determining a body having minimum resistance reduces
for given functions A(¥), 8(v), ¢(v), R(¥), and magnitudes X, rp, Tz

to determining the functious a(V¥), 8{(¥), r(¥), rendering the functional

Ve

= ¥ + 1 | .
X = vuo {‘/m [cos 6+ sin A sin(8 + A):I
_ X+ 1 I : _
‘,—-—-——x - [cos 3 -2sina sin(9d a,):l}dw

minimum for the isometric condition



Ve

b 4
+

X = P(y) |cos(8 + A) (x +11 - cos EA)

=0 \/{ R 2x W - cos 2A

o
of

t

'—D

L1l
. cos(d - a) (x +11 - cos 2@) 2 x-1 ay
T 2% X - cos 2a
and the two differential conditions
Sl )
2 n-1
ar o(¥) (i + 1 1 - cos Za) sin(d - a) = O
dy \/ir 2% % - cOs 2a >(11.1)
gﬁ _ 1l + cos 2a gg _ sin § sin a 95 + sin 20 d 1ln @ =0
dy » - cos 2a dy r sin(d - a) d¥ 2% dy W,

Without repeating the considerations, analogous to the preceding,
we present the final results.

The required characteristic BC consists of the nonextremal segment
CD, which is a characteristic of the limiting rarefaction flow, and the

extremal segment BD. On this segment the required functions are connected
by the following relations:

q bl
jkléin 29 + i sin 2@) + u(l - cos 28) =0

X+1
. W1

]Xlw(v)cos a{Xx +11 - cos 2a W41 . 2

Y —————— sin® 4 =0

\/ir 2% X - €08 2Q X - COS 20

where A 1is a constant and p a variable Lagrange multiplier. The
magnitudes A and p(WD) are determined from the last relations in terms

of the known magnitudes a, €, r, and ¥ at the point D. The function

r(v) is determined by the differential equation (11.1), and p(¥) by the
equation

sV ]

|+
xlx
tit
(1 P

ey (X + 11 - cos 2“) [IAlcos(8 - a) + u sin(® - a)]

- 2% % - COS 2a

dy ~/;r2

2214



E-122

17

12. As an illustration of the method, the computed generatrices of
bodies of revolution are represented in the figures. Bodies having a
given head cone are represented in figures 4 and 5; the half-angle of
the cone is equal to 35°., The rear parts of the semi-infinite cylinder
are represented in figures 6 and 7. The Mach numbers of the oncoming
flow M, and the coefficients of the wave resistance of the bodles cx

are gliven on the figures.
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